Multi-scale assessment of heavy metal pollution

Oleg Travnikov on behalf of MSC-E and CCC

EMEP Steering Body, Geneva, 2011
Scope of EMEP activities on HMs in 2011

- Monitoring of heavy metals within EMEP (CCC)
- Analytical laboratory intercomparison for heavy metals in precipitation (CCC)
- Collection and processing of heavy metal emissions data (CEIP)
- Operational modelling of heavy metal transboundary pollution (MSC-E)
- Research and development (multi-scale assessment):
 - Global modelling system GLEMOs
 - National/local scale pollution assessment (MSC-E, CCC, TFMM, Parties)
 - Improvement of model parameterisation and global scale assessment (MSC-E, Parties)
- Co-operation with national experts, international organizations and programmes
Scope of EMEP activities on HMs in 2011

- Monitoring of heavy metals within EMEP (CCC)
- Analytical laboratory intercomparison for heavy metals in precipitation (CCC)
- Collection and processing of heavy metal emissions data (CEIP)
- Operational modelling of heavy metal transboundary pollution (MSC-E)
- Research and development (multi-scale assessment):
 - Global modelling system GLEMOS (MSC-E)
 - National/local scale pollution assessment – Case study (MSC-E, CCC, TFMM, Parties)
 - Improvement of model parameterisations for regional and global scale assessment (MSC-E, Parties)
- Co-operation with national experts, international organizations and programmes

EMEP Steering Body, Geneva, 2011
MSC-E publications on heavy metals

Peer-reviewed publications:

• Travnikov O. et al. ‘GLEMOS: Application to heavy metal and POP pollution’, *ACP (EMEP special issue)*, in prep.

• Travnikov O. et al. ‘Multi-model assessment of mercury dispersion in the global atmosphere’, *ACP (EMEP special issue)*, in prep.
Multi-scale pollution assessment

Support of pollution assessment within EMEP

Global scale

Regional scale (EMEP)

National/local scale

EMEP Steering Body, Geneva, 2011
Multi-scale pollution assessment

Why different scales are needed?

Regional scale (EMEP):
- Operational assessment of transboundary pollution
- Support of policy decisions within CLRTAP

Global scale:
- Contribution of intercontinental transport to pollution levels within EMEP
- Effect of long-term accumulation and cycling

National/local scale:
- Refinement of transboundary pollution on a country scale
- Process studies and model improvement

EMEP Steering Body, Geneva, 2011
Global scale: GLEMSOS modelling system

Global EMEP Multi-media Modelling System (GLEMSOS)

New developments:

- Testing atmospheric transport module with a tracer dispersion
- Improvement of meteorological driver
- Development of the oceanic transport module
- Updates and evaluation of the mercury chemistry module
Testing atmospheric transport module

Simulation of a tracer transport from Fukushima-1 accident

Atmospheric dispersion of 131I from Fukushima-1 (Mar-Apr 2011)

Conventional source:
Tracer: 131I
Half-life: 8.02 days
Release: 2.5×10^{16} Bq/day
Location: Fukushima-1
Testing atmospheric transport module

Simulation of a tracer transport from Fukushima-1 accident

Acknowledgements: Measurement data were provided by Swedish Radiation Safety Authority (SSM)

EMEP Steering Body, Geneva, 2011
Improvement of meteorological driver
Implementation and testing of WRF model on a global scale

WRF advantages as met driver:

• Multi-scale applications (from global to local)
• Possibility to use on different projections
• Flexible choice of physical parameterizations and input data
• Well developed, tested and supported
• Freely available

WRF generated global precipitation field (2009)
Implementation of oceanic transport

Development of oceanological driver for GLEMOS

Oceanological driver:
- Based on the Parallel Ocean Program (LANL, USA)
- Driven by ECMWF ORA-S3 re-analysis
- Provides full set of oceanological parameters
- Evaluated against observations
Update and evaluation of Hg modules

Further improvement of Hg chemical scheme

Model updates:

- Further study and evaluation of Hg chemistry with halogens (Br, BrO)
- Improvement of the atmospheric Hg depletion mechanism in the Arctic (AMDEs)
- Detailed evaluation of simulated Hg species concentration (Hg0, Hg(II)$_{gas}$, HgP) and wet deposition on a global scale

Note: This activity will be continued in the framework of EU GMOS project
EU FP7 project GMOS
Global Mercury Observation System (GMOS)

Major project components:

- Global monitoring system for Hg (land-based, over-water and aircraft observations)
- Updates of Hg emissions inventory and future scenarios
- Development and application of global and regional scale models
- Evaluation of modelling results against observations

Role of MCS-E: Lead of global scale modelling activity
Downscaling: from regional to national/local

Refinement of transboundary pollution within EMEP

National/local scale assessment requires:

- Model application with finer spatial resolution (e.g. 5×5 km)
- Supply of emissions data with fine resolution
- Involving additional (national scale) measurements
- ...

Note: Downscaling of pollution assessment to national/local level is principally country-specific

EMEP Steering Body, Geneva, 2011
Country-specific assessment: Case study

Main objectives:

- Detailed assessment of HM pollution with fine spatial resolution
- Evaluation of the resolution effect on the assessment results
- Analysis of factors affecting quality of pollution assessment
- Improvement of the assessment means (model, measurements, emissions data)

Countries involved: Czech Republic, Croatia, the Netherlands, Spain

Note: The Case Study results were presented and discussed at TFMM meeting (Zurich, May 2011)
Czech Republic: Results and analysis

Recent activities:

- Collection, processing and evaluation of national scale input data (emissions, monitoring, meteorology etc.)
- Simulations of Cd pollution levels with resolution 5x5 km²
- Evaluation of modelling results against observations
- Analysis of the effect of spatial resolution on the assessment results
Czech Republic: Results and analysis

Recent activities:

• Collection, processing and evaluation of national scale input data (emissions, monitoring, meteorology etc.)
• Simulations of Cd pollution levels with resolution 5x5 km²
• Evaluation of modelling results against observations
• Analysis of the effect of spatial resolution on the assessment results

Cd deposition over Czech Republic (2007)

Resolution: 50x50 km²

Resolution: 5x5 km²
Effect of spatial resolution
(50×50 km² vs. 5×5 km²)

Step 1: Refinement of meteorological data
Step 2: Refinement of emissions data

Meteorology 50×50 km²
Emission 50×50 km²

Meteorology 5×5 km²
Emission 50×50 km²

Meteorology 5×5 km²
Emission 5×5 km²
Effect of spatial resolution

Step 1: Refinement of meteorological data

Cd concentration in air (model vs. observations)
Effect of spatial resolution

Step 2: Refinement of emissions data

Cd concentration in air (model vs. observations)

0.0 0.2 0.4 0.6
Concentrations in air, ng/m³

Model (50x50 km)
Model (5x5 km, met)
Observed

Cd emissions (2007)

Rudolice v Horach
Observed Model (5x5 km, meteorol + emis)

Rudolice v Horach

Concentrations in air, ng/m³

0.0 0.2 0.4 0.6 0.8 1.0

Step 2: Refinement of emissions data

Cd concentration in air (model vs. observations)

Concentrations in air, ng/m³

0.0 0.2 0.4 0.6

Model (50x50 km)
Model (5x5 km, met)
Model (5x5 km, met+emis)
Observed

Cd emissions (2007)

Rudolice v Horach
Observed Model (5x5 km, meteorol + emis)
Effect of spatial resolution

Step 2: Refinement of emissions data

Cd concentration in air (model vs. observations)

Cd emissions (2007)
Croatia: Results and preliminary analysis

Recent activities:

- Simulations of Pb pollution levels with resolution 10x10 km²
- First evaluation of modelling results against measurements at EMEP and non-EMEP national sites
- Study of the effect of heavy metal wind re-suspension on pollution levels in the country
The Netherlands: Pilot results

Recent activities:

• Simulations of Pb pollution levels with resolution 5x5 km²
• First evaluation of modelling results against measurements at EMEP and non-EMEP national sites

Pb deposition (Netherlands)

Pb concentration in air (2007)
Spain: Data submission

Submitted data:
- Meteorological observations
- Measurements of HM in air from 98 sites (Pb, Cd, Hg, other)
- Mineral dust concentration in air
- HM concentration in soil

Further activities:
- Data collection (emission)
- Model simulation and analysis
- Intercomparison with national model
Multi-scale assessment: Summary

- Pollution assessment on different scales is required to support EMEP operational modelling.
- Global modelling framework GLEMOS is developed for multi-media simulations of global scale pollutants.
- Pollution assessment on a national/local scale is country-specific.
- Application of finer resolution improves quality of the assessment but the improvement depends on availability of detailed input information (meteorology, emissions, etc.).
- Evaluation and analysis of national/local scale assessment results also require involvement of detailed observations.
- Quality of the assessment would be improved applying consistent modelling approaches on different scales (projection, grids etc.).
Multi-scale assessment: Summary

- Pollution assessment on different scales is required to support EMEP operational modelling.

- Global modelling framework GLEMOS is developed for multi-media simulations of global scale pollutants.

- Pollution assessment on a national/local scale is country-specific.

- Application of finer resolution improves quality of the assessment but the improvement depends on availability of detailed input information (meteorology, emissions, etc.).

- Evaluation and analysis of national/local scale assessment results also require involvement of detailed observations.

- Quality of the assessment would be improved applying consistent modelling approaches on different scales (projection, grids etc.).
New EMEP projection and grid

Improvement of pollution assessment within EMEP

Suggestions for new EMEP grid:
- Move to geographical (lat-lon) projection to improve consistency of the multi-scale pollution assessment
- Apply the grid resolution depending on a scale and particular task

Efforts required:
- Modification of the emissions grid
- Update of land cover dataset in collaboration with WGE
- Re-evaluation of monitoring sites' representativeness at local scale

Note: Details of new projection and grid require comprehensive discussion at TFMM
Workplan elements on HMs for 2012-13

Annual activities:

- Operational monitoring and modelling pollution levels in Europe and evaluation of modelling results against measurements (MSC-E, CCC)

Research and development:

- Further development of the GLEMOS modelling system (nesting procedure, chemical reactants and aerosol modules) (MSC-E)
- Improvement and evaluation of heavy metal re-suspension scheme (MSC-E, CCE, Parties)
- Study of major physical and chemical processes governing mercury cycling in the atmosphere in co-operation with EU GMOS project (MSC-E, Parties)

Co-operation:

- Case study: Co-operation with national experts for national/local scale HMs pollution assessment (MSC-E, TFMM, Parties)